
CONTENTS

Crossroads 1.38

Karel Kubat
e-tunity

2005, 2006, ff.

Abstract

Crossroads is a load balance and fail over utility for TCP based services. It is a daemon
program running in user space, and features extensive configurability, polling of back ends
using ’wakeup calls’, detailed status reporting, ’hooks’ for special actions when backend calls
fail, and much more. Crossroads is service-independent: it is usable for HTTP/HTTPS, SSH,
SMTP, DNS, etc. In the case of HTTP balancing, Crossroads can modify HTTP headers, e.g. to
provide ’session stickiness’ for back-end processes that need sessions, but aren’t session-aware
of other back-ends.

Contents
1 Introduction 4

1.1 Obtaining Crossroads . 4
1.2 Copyright and Disclaimer . 4
1.3 Terminology . 4
1.4 Porting issues for pre-1.21 installations . 6
1.5 Porting issues for pre-0.26 installations . 6
1.6 Porting issues for pre-1.08 installations . 6

2 Installation for the impatient 6

3 Using Crossroads 7
3.1 General Commandline Syntax . 7
3.2 Status Reporting . 8
3.3 Logging-related options . 8
3.4 Reloading Configurations . 8

4 The configuration 9
4.1 General language elements . 9

4.1.1 Empty lines and comments . 9
4.1.2 Keywords, numbers, identifiers, generic strings 9

4.2 Service definitions . 9
4.2.1 type - Defining the service type . 10
4.2.2 port - Specifying the listen port . 10
4.2.3 bindto - Binding to a specific IP address 10
4.2.4 verbosity - Controlling debug output . 10
4.2.5 dispatchmode - How are back ends selected 11
4.2.6 revivinginterval - Back end wakeup calls 12
4.2.7 maxconnections - Limiting concurrent clients at service level 12

1

CONTENTS

4.2.8 backlog - The TCP Back Log size . 12
4.2.9 shmkey - Shared Memory Access . 12
4.2.10 allow* and deny* - Allowing or denying connections 13
4.2.11 useraccount - Limiting the effective ID of external processes 13

4.3 Backend definitions . 14
4.3.1 server - Specifying the back end address 14
4.3.2 verbosity - Controlling verbosity at the back end level 14
4.3.3 retries - Specifying allowed failures . 15
4.3.4 weight - When a back end is more equal than others 15
4.3.5 decay - Levelling out activity of a back end 15
4.3.6 onstart, onend, onfail - Action Hooks . 15
4.3.7 trafficlog and throughputlog - Debugging and Performance Aids 16
4.3.8 stickycookie - Back end selection with an HTTP cookie 16
4.3.9 HTTP Header Modification Directives . 17

5 Tips, Tricks and Random Remarks 19
5.1 How back ends are selected in load balancing . 19

5.1.1 Bysize, byduration or byconnections? . 19
5.1.2 Averaging size and duration . 20
5.1.3 Specifying decays . 20
5.1.4 Adjusting the weights . 21

5.2 Throttling the number of concurrent connections 21
5.3 Using an external program to dispatch . 22

5.3.1 Configuring the external handler . 22
5.3.2 Writing the external handler . 22
5.3.3 Examples of external handlers . 23

5.4 TCP Session Stickiness . 29
5.5 HTTP Session Stickiness . 30

5.5.1 Don’t use stickiness! . 30
5.5.2 But if you must.. 30

5.6 Passing the client’s IP address . 31
5.6.1 Sample Crossroads configuration . 32
5.6.2 Sample Apache configuration . 32

5.7 Debugging network traffic . 32
5.8 IP filtering: Limiting Access by Client IP Address 34

5.8.1 General Examples . 34
5.8.2 Using External Files . 34
5.8.3 Mixing Directives . 35

5.9 Configuration examples . 35
5.9.1 A load balancer for three webserver back ends 35
5.9.2 An HTTP forwarder when travelling . 38
5.9.3 SSH login with enforced idle logout . 39

5.10 Linux and ip_conntrack_max . 39
5.11 Marking back ends as bad after more than one try 40

6 Benchmarking 40
6.1 Benchmark 1: Accessing a proxy via crossroads or directly 40

6.1.1 Results . 41
6.1.2 Discussion . 41

6.2 Benchmark 2: Crossroads versus Linux Virtual Server (LVS) 41
6.2.1 Environment . 42
6.2.2 Tests and results . 42

2

CONTENTS

7 Compiling and Installing 43
7.1 Prerequisites . 43
7.2 Compiling and installing . 43
7.3 Configuring crossroads . 43
7.4 A boot script . 44

7.4.1 SysV Style Startup . 44
7.4.2 BSD Style Startup . 45

3

1 INTRODUCTION

1 Introduction
Crossroads is a daemon that basically accepts TCP connections at preconfigured ports, and
given a list of ’back ends’ distributes each incoming connection to one of the back ends, so
that a client request is served. Additionally, crossroads maintains an internal administration of
the back end connectivity: if a back end isn’t usable, then the client request is handled using
another back end. Crossroads will then periodically check whether a previously not usable
back end has come to life yet. Also, crossroads can select back ends by estimating the load, so
that balancing is achieved.

Using this approach, crossroads serves as load balancer and fail over utility. Crossroads will
very likely not be as reliable as hardware based balancers, since it always will require a server
to run on. This server, in turn, may become a new Single Point of Failure (SPOS). However,
in situations where cost efficiency is an issue, crossroads may be a good choice. Furthermore,
crossroads can be deployed in situations where a hardware based balancing already exists and
augmenting service reliability is needed. Or, crossroads may be run off a diskless system, which
again improves reliability of the underlying hardware.

This document describes how to use crossroads, how to configure it in order to increase the
reliability of your systems, and how to compile the program from its sources.

1.1 Obtaining Crossroads
As quick reference, here are some important URL’s for Crossroads:

• http:/crossroads.e-tunity.com is the site that serves Crossroads. You can browse
this at leisure for documentation, sources, and so on.

• http://freshmeat.net/projects/crossr is the Freshmeat announcement page.

• svn://svn.e-tunity.com/crossroads is the SVN repository; anonymous reading
(fetching) is allowed. In order to commit changes, mail me1 for credentials.

1.2 Copyright and Disclaimer
Crossroads is distributed as-is, without assumptions of fitness or usability. You are free to use
crossroads to your liking. It’s free, and as with everything that’s free: there’s also no warranty.

You are allowed to make modifications to the source code of crossroads, and you are al-
lowed to (re)distribute crossroads, as long as you include this text, all sources, and if applicable:
all your modifications, with each distribution.

While you are allowed to make any and all changes to the sources, I would appreciate
hearing about them. If the changes concern new functionality or bugfixes, then I’ll include
them in a next release, stating full credits. If you want to seriously contribute (to which you are
heartily encouraged), then mail me and I’ll get you access to the Crossroads SVN repository, so
that you can update and commit as you like.

1.3 Terminology
Throughout this document, the following terms are used: 2

A client is a process that initiates a network connection to get contact with some service.

A service or server process or listener is a central application that accepts network connec-
tions from clients and sevices them.

1mailto:karel@e-tunity.com
2Many more meanings of the terms will exist – yes, I am aware of that. I’m using the terms here in a very strict sense.

4

1 INTRODUCTION

Back ends are locations where crossroads looks in order to service its clients. Crossroads sits
’in between’ and does its tricks. Therefore, as far as the back ends are concerned, cross-
roads behaves like a client. As far as the true client is concerned, crossroads behaves like
the service. The communication is however transparent: neither client nor back end are
aware of the middle position of crossroads.

A connection is a network conversation between client and service, where data are transferred
to and fro. As far as crossroads is concerned, success means that a connection can be estab-
lished without errors on the network level. Crossroads isn’t aware of service pecularities.
E.g., when a webserver answers HTTP/1.0 500 Server Error then crossroads will
see this as a succesful connection, though the user behind a browser may think other-
wise.

Back end selection algorithms are methods by which crossroads determines which back end
it will talk to next. Crossroads has a number of built-in algorithms, which may be config-
ured per service.

Back end states are the statusses of each back end that is known to crossroads. A back end
may be available, (temporarily) unavailble or truly down. When a back end is temporarily
unavailable, then crossroads will periodically check whether the back end has come to life
yet (that is, if configured so).

A spike is a sudden increase in activity, leading to extra load on a given service. When cross-
roads is in effect and when the spike occurs in one connection, then obviously the spike
will also appear at one of the back ends. However, crossroads will see the spike and will
make sure that a subsequent request goes to an other back end. In contrast, when sev-
eral connections arrive simultaneously and cause a spike, then crossroads will be able to
distribute the connections over several back ends, thereby ’flattening out’ the increase.

Load balancing means that incoming client requests are distributed over more than just one
back end (which wouldn’t be the case if you wouldn’t be running crossroads). Enabling
load balancing is nothing more than duplicating services over more than one back end,
and having something (in this case: crossroads) distribute the requests, so that per back
end the load doesn’t get too high.

An HTTP session is a series of separate network connections that originate from one browser.
E.g., to fill the display with text and images, the browser hits a website several times.
An HTTP session may even span several screens. E.g., a website registration dialog may
involve 3 screens that when called from the same browser, form a logical group of some
sort.

Headers or header lines are specific parts of an HTTP message. Crossroads has directives to
add or modify headers that are part of the request that a browser sends to server, or those
that are part of the server.

Session stickiness means that when a browser starts an HTTP dialog, the balancer makes sure
that it ’sticks’ to the same back end (i.e., subsequent requests from the browser are forced
to go to the same back end, instead of being balanced to other ones).

Back end usage is measured by crossroads in order to be able to determine back end selection.
Crossroads stores information about the number of active connections, the transferred
bytes and about the connection duration. These numbers can be used to estimate which
back end is the least used – and therefore, presumably, the best candidate for a new re-
quest.

Fail over is almost always used when load balancing is in effect. The distributor of client
requests (crossroads of course) can also monitor back ends, so that incase a back end is
’down’, it is no longer accessed.

Service downtime normally occurs when a service is switched off. Downtime is obviously
avoided when fail over is in effect: a back end can be taken out of service in a controlled
manner, without any client noticing it.

5

2 INSTALLATION FOR THE IMPATIENT

1.4 Porting issues for pre-1.21 installations
As of version 1.21, the event-hook directives onsuccess and onfailure no longer exists.

• Please replace onsuccess by onstart;

• Please replace onfailure bu onfail;

• Note that there is a new hook onend.

The commands that are run via onstart, onend or onfail are subject to format expan-
sion; e.g., %1w is expanded to the weight of the first back end, etc.. See section 4 for details.

1.5 Porting issues for pre-0.26 installations
As of version 0.26 the syntax of the configuration file has changed. In particular:

• The keyword maxconnections is now used instead of maxclients;

• The keyword connectiontimeout is now used instead of sessiontimeout.

Therefore when converting configuration files to the new syntax, the above keywords must
be changed. (The reason for these changes is that 0.26 introduces sticky HTTP sessions that span
multiple TCP connections, and the term session is used strictly in that sense – and no longer for
a TCP connection.)

1.6 Porting issues for pre-1.08 installations
As of version 1.08, the following directives no longer are supported:

• insertstickycookie was replaced by the more generic directive addclientheader.
E.g., instead of
insertstickycookie "XRID=100; Path=/";
the syntax is now
addclientheader "Set-Cookie: XRID=100; Path=/";

• insertrealip was replaced by the more generic directive setserverheader. E.g.,
instead of
insertrealip on;
the syntax is now
setserverheader "XR-Real-IP: %r";
This incidentally also makes it possible to change the header name (here: XR-Real-IP).

2 Installation for the impatient
For the impatient, here’s the very-quick-but-very-superficial recipy for getting crossroads up
and running:

• If you don’t have SVN or don’t want to use it:

– Obtain the crossroads source archive at http://crossroads.e-tunity.com.
– Change-dir to a ’sources’ directory on your system and unpack the archive.
– Change-dir into the create directory crossroads/.

• If you have SVN and want to go for the newest snapshot:

– Get the latest sources and snapshots using SVN from
svn://svn.e-tunity.com/crossroads.

– You’ll find the newest alpha version under crossroads/trunk and the stable ver-
sions under crossroads/tags, e.g. crossroads/tags/release-1.00.

6

3 USING CROSSROADS

– Choose which you want to use: the latest stable release, or the bleeding edge alpha?
In the former case, change-dir to crossroads/tags/release-X.YY, where X.YY
is a release ID. In the latter case, change-dir to crossroads/trunk.

• Type make install. This installs the crossroads binary into /usr/local/bin/. If the
compilation doesn’t work on your system, check etc/Makefile.def for hints.

• Create a file /etc/crossroads.conf. In it state something like:

service www {
port 80;
revivinginterval 15;
backend one {

server 10.1.1.100:80;
}
backend two {

server 10.1.1.101:80;
}

}

That’s off course assuming that you want to balance HTTP on port 80 to two back ends at
10.1.1.100 and 10.1.1.101.

• Type crossroads start.

• Surf to the machine where crossroads is running. You will see the pages served by the
back ends 10.1.1.100 or 10.1.1.101.

• To monitor the status of crossroads, type crossroads status.

3 Using Crossroads
Crossroads is started from the commandline, and highly depends on /etc/crossroads.conf
(the default configuration file). It supports a number of flags (e.g., to overrule the location of the
configuration file). The actual usage information is always obtained by typing crossroads
without any arguments. Crossroads then displays the allowed arguments.

3.1 General Commandline Syntax
This section shows the most basic usage. As said above, start crossroads without arguments
to view the full listing of options.

• crossroads start and crossroads stop are typical actions that are run from sys-
tem startup scripts. The meaning is self-explanatory.

• crossroads restart is a combination of the former two. Beware that a restart may
cause discontinuity in service; it is just a shorthand for typing the ’stop’ and ’start’ actions
after one another.

• crossroad status reports on each running service. Per service, the state of each back
end is reported.

• crossroads tell service backend state is a command line way of telling crossroads that
a given back end, of a given service, is in a given state. Normally crossroads maintains
state information itself, but by using crossroads tell, a back end can be e.g. taken
’off line’ for servicing.

• crossroads configtest tells you whether the configuration is syntactially correct.

• crossroads services reports on the configured services. In contrast to crossroads
status, this option only shows what’s configured – not what’s up and running. There-
fore, crossroads services doesn’t report on back end states.

7

3 USING CROSSROADS

• crossroads sampleconf shows a sample configuration on screen. A good way of
quicky viewing the configuration file syntax, or of getting a start for your own configura-
tion /etc/crossroads.conf.

3.2 Status Reporting
The command crossroads status shows a verbose human-readable report of how Cross-
roads is doing. When many services are configured, this can be a somewhat lengthy output.
If you’re interested in the overview of only one service, you can use crossroads status
servicename, in which case the report will only be shown for the stated service.

Similarly, if you’re interested only in the status of a given back end of a given service, use
crossroads service servicename backendname.

The flag -t causes the status overview to be abbreviated and displayed in a parseable for-
mat. This flag can be used in automated scripts that check how Crossroads is doing; e.g., in
health checking scripts. When -t is used, the format of the status reporter is as follows:

• Service health is reported on one line per service.

• The first string on the line is the service name.

• After this, a series follows of backendname=state, where the back end name is the config-
ured name of the back end, and where state is e.g. available, DOWN, UNAVAILABLE,
WAKING. All statuses that cause Crossroads not to use the back end are in caps. The series
is repeated for all back ends of the given service.

3.3 Logging-related options
Two ’flags’ of Crossroads are specifically logging-related. This section elaborates on these flags.

First, there’s flag -a. When present, the start and end of activity is logged using statements
like

YYYY-MM-DD HH/MM/SS starting http from 61.45.32.189 to 10.1.1.1

Similarly, there are ’ending’ statements. Using this flag and scanning your logs for these
statements may be helpful in quickly determining your system load.

Second, there’s flag -l. This flag selects the ’facility’ of logging and defaults to LOG_DAEMON.
You can supply a number between 0 and 7 to flag -l to select LOG_LOCAL0 to LOG_LOCAL7.
This would separate the Crossroads-related logging from other streams. Here’s a very short
guide; please read your Unix manpages of syslogd for more information.

• First edit /etc/syslog.conf and add a line:

local7.* /var/log/crossroads.log

That instructs syslogd to send LOG_LOCAL7 requests to the logfile /var/log/crossroads.log.

• Next, restart syslogd. On most Unices that’s done by issuing killall -1 syslogd.
(As a side-note, I tried this once on an Bull/AIX system, and the box just shut down. The
killall command killed every process...)

• Now start crossroads with the flag -l7.

• Finally, monitor /var/log/crossroads.log for Crossroads’ messages.

3.4 Reloading Configurations
Crossroads doesn’t support the reloading of a configuration while running (such as other pro-
grams, e.g. Apache do). There are various technical reasons for this.

However, external lists of allowed or denied IP addresses can be reloaded by sending a
signal -1 (SIGHUP) to Crossroads. See section 4.2 for the details.

8

4 THE CONFIGURATION

4 The configuration
The configuration that crossroads uses is normally stored in the file /etc/crossroads.conf.
This location can be overruled using the command line flag -c.

This section explains the syntax of the configuration file, and what all settings do.

4.1 General language elements
This section describes the general elements of the crossroads configuration language.

4.1.1 Empty lines and comments

Empty lines are of course allowed in the configuration. Crossroads recognizes three formats of
comment:

• C-style, between /* and */,

• C++-style, starting with // and ending with the end of the text line;

• Shell-style, starting with # and ending with the end of the text line.

Simply choose your favorite editor and use the comment that ’looks best’.3

4.1.2 Keywords, numbers, identifiers, generic strings

In a configuration file, statements are identified by keywords, such as service, verbosity.
These are reserved words.

Many keywords require an identifier as the argument. E.g, a service has a unique name,
which must start with a letter or underscore, followed by zero or more letters, underscores, or
digits. Therefore, in the statement service myservice, the keyword is service and the
identifier is myservice.

Other keywords require a numeric argument. Crossroads knows only non-negative integer
numbers, as in port 8000. Here, port is the keyword and 8000 is the number.

Yet other keywords require ’generic strings’, such as hostname specifications or system com-
mands. Such generic strings contain any characters (including white space) up to the terminat-
ing statement character ;. If a string must contain a semicolon, then it must be enclosed in
single or double quotes:

• This is a string; is a string that starts at T and ends with g

• "This is a string"; is the same, the double quotes are not necessary

• "This is ; a string"; has double quotes to protect the inner ;

Finally, an argument can be a ’boolean’ value. Crossroads knows true, false, yes, no,
on, off. The keywords true, yes and on all mean the same and can be used interchangeably;
as can the keywords false, no and off.

4.2 Service definitions
Service definitions are blocks in the configuration file that state what is for each service. A
service definition starts with service, followed by a unique identifier, and by statements in {
and }. For example:

3I favor C or C++ comment. My favorite editor emacs can be put in cmode and nicely highlight what’s comment and
what’s not. And as a bonus it will auto-indent the configuration!

9

4 THE CONFIGURATION

// Definition of service ’www’:
service www {

...

... // statements that define the

... // service named ’www’

...
}

The configuration file can contain many service blocks, as long as the identifying names
differ. The following list shows possible statements. Each statement must end with a semicolon,
except for the backend statement, which has is own block (more on this later).

4.2.1 type - Defining the service type

Description: The type statement defines how crossroads handles the stated service. There are
currently two types: any and http. The type anymeans that crossroads doesn’t interpret
the contents of a TCP stream, but only distributes streams over back ends. The type http
means that crossroads has to analyze what’s in the messages, does magical HTTP header
tricks, and so on – all to ensure that multiple connections are treated as one session, or
that the back end is notified of the client’s IP address.
Unless you really need such special features, use the type any (the default), even for
HTTP protocols.

Syntax: type specifier, where specifier is any or http

Default: any

4.2.2 port - Specifying the listen port

Description: The port statement defines to which TCP port a service ’listens’. E.g. port
8000 says that this service will accept connections on port 8000.

Syntax: port number

Default: There is no default. This is a required setting.

4.2.3 bindto - Binding to a specific IP address

Description: The bindto statement is used in situations where crossroads should only listen
to the stated port at a given IP address. E.g., bindto 127.0.0.1 causes crossroads to
’bind’ the service only to the local IP address. Network connections from other hosts
won’t be serviced. By default, crossroads binds a service to all presently active IP ad-
dresses at the invoking host.

Syntax: bindto address, where address is a numeric IP address, such as 127.0.0.1, or the key-
word any.

Default: any

4.2.4 verbosity - Controlling debug output

Description: Verbosity statements come in two forms: verbosity on or verbosity off.
When ’on’, log messages to /var/log/messages are generated that show what’s going
on.4 The keyword verbose is an alias for verbosity.

4Actually, the messages go to syslog(3), using facility LOG_DAEMON and priority LOG_INFO. In most (Linux) cases
this will mean: output to /var/log/messages. On Mac OSX the messages go to /var/log/system.log.

10

4 THE CONFIGURATION

Syntax: verbosity setting or verbose setting, where setting is true, yes or on to turn ver-
bosity on; or false, no, off to turn it off.

Default: off

4.2.5 dispatchmode - How are back ends selected

Description: The dispatch mode controls how crossroads selects a back end from a list of active
back ends. The below text shows the bare syntax. See section 5.1 for a textual explanation.
The settings can be:

• dispatchmode roundrobin: Simply the ’next in line’ is chosen. E.g, when 3 back
ends are active, then the usage series is 1, 2, 3, 1, 2, 3, and so on.
Roundrobin dispatching is the default method, when no dispatchmode statement
occurs.

• dispatchmode random: Random selection. Probably only for stress testing, though
when used with weights (see below) it is a good distributor of new connections too.

• dispatchmode bysize [over connections]: The next back end is the one that
has transferred the least number of bytes. This selection mechanism assumes that
the more bytes, the heavier the load.
The modifier over connections is optional. (The square brackets shown above are not
part of the statement but indicate optionality.) When given, the load is computed as
an average of the last stated number of connections. When this modifier is absent,
then the load is computed over all connections since startup.

• dispatchmode byduration [over connections]: The next back end is the one
that served connections for the shortest time. This mechanism assumes that the
longer the connection, the heavier the load.

• dispatchmode byconnections: The next back end is the one with the least active
connections. This mechanism assumes that each connection to a back end represents
load. It is usable for e.g. database connections.

• dispatchmode byorder: The first back end is selected every time, unless it’s un-
available. In that case the second is taken, and so on.

• dispatchmode byclientip: The client’s IP address is ’hashed’ into a number,
which is used to pick a back end. The same client IP address will therefore al-
ways be dispatched to the same back end. When the back end of choice is down,
dispatchmode byconnections is used.

• dispatchmode externalhandler program arguments: This is a special mode, where
an external program is delegated the responsibility to say which back end should be
used next. In this case, Crossroads will call the external program, and this will of
course be slower than one of the ’built-in’ dispatch modes. However, this is the ulti-
mate escape when custom-made dispatch modes are needed.
The dispatch mode that uses an externalhandler is discussed separately in sec-
tion 5.3.

The selection algorithm is only used when clients are serviced that aren’t part of a sticky
HTTP session. This is the case during:

• all client requests of a service type any;
• new sessions of a service type http.

When type http is in effect and a session is underway, then the previously used back end
is always selected – regardless of dispatching mode.
Your ’right’ dispatch mode will depend on the type of service. Given the fact that cross-
roads doesn’t know (and doesn’t care) how to estimate load from a network traffic stream,
you have to choose an appropriate dispatch mode to optimize load balancing. In most
cases, roundrobin or byconnections will do the job just fine.

11

4 THE CONFIGURATION

Syntax: dispatchmode mode (see above for the modes), optionally followed by over number,
or when the mode is externalhandler, followed by program.

Default: roundrobin

4.2.6 revivinginterval - Back end wakeup calls

Description: A reviving interval definition is needed when crossroads determines that a back
end is temporarily unavailable. This will happen when:

• The back end cannot be reached (network connection fails);
• The network connection to the back end suddenly dies.

An example of the definition is revivinginterval 10. When this reviving interval is
given, crossroads will check each 10 seconds whether unavailable back ends have woken
up yet. A back end is considered awake when a network connection to that back end can
succesfully be established.

Syntax: revivinginterval number, where the number is the interval in seconds.

Default: 0 (no wakeup calls)

4.2.7 maxconnections - Limiting concurrent clients at service level

Description: The maximum number of connections is specified using maxconnections. There
is one argument; the number of concurrent established connections that may be active
within one service.
’Throttling’ the number of connections is a way of preventing Denial of Service (DOS)
attacks. Without a limit, numerous network connections may spawn so many server in-
stances, that the service ultimately breaks down and becomes unavailable.

Syntax: maxconnections number, where the number specifies the maximum of concurrent
connections to the service.

Default: 0, meaning that all connections will be accepted.

4.2.8 backlog - The TCP Back Log size

Description: The TCP back log size is a number that controls how many ’waiting’ network
connections may be queued, before a client simply cannot connect. The syntax is e.g.
backlog 5 to cause crossroads to have 5 waiting connections for 1 active connection.
The backlog queue shouldn’t be too high, or clients will experience timeouts before they
can actually connect. The queue shouldn’t be too small either, because clients would be
simply rejected. Your mileage may vary.

Syntax: backlog number
Default: 0, which takes the operating system’s default value for socket back log size.

4.2.9 shmkey - Shared Memory Access

Description: Different Crossroads invocations must ’know’ of each others activity. E.g, crossroad
status must be able to get to the actual state information of all running services. This is
internally implemented through shared memory, which is reserved using a key.
Normally crossroads will supply a shared memory key, based on the service port and
bitwise or-ed with a magic number. In situations where this conflicts with existing keys
(of other programs, having their own keys), you may supply a chosen value.
The actual key value doesn’t matter much, as long as it’s unique and as long as each
invocation of crossroads uses it.

12

4 THE CONFIGURATION

Syntax: shmkey number

Default: 0, which means that crossroads will ’guess’ its own key, based on TCP port and a
magic number.

4.2.10 allow* and deny* - Allowing or denying connections

Description: Crossroads can allow or deny connections based on the IP address of a client.
There are four directives that are relevant: allowfrom, allowfile, denyfrom and
denyfile. When using allowfrom and denyfrom then the IP addresses to allow or
deny connections are stated in /etc/crossroads.conf.
When allow* directives are used, then all connections are denied unless they match the
stated allowed IP’s. When deny* directives are used, then all connections are allowed
unless they match the stated disallowed IP’s. When denying and allowing is both used,
then the Crossroads checks the deny list first.
The statements allowfrom and denyfrom are followed by a list of filter specifications.
The statements allowfile and denyfile are followed by a filename; Crossroads will
read filter specifications from those external files. In both cases, Crossroads obtains filter
specifications and places them in its lists of allowed or denied IP addresses. The difference
between specifying filters in /etc/crossroads.conf or in external files, is that Cross-
roads will reload the external files when it receives signal 1 (SIGHUP), as in killall -1
crossroads.
The filter specifications must obey the following syntax: it consists of up to four numbers
ranging from 0 to 255 and separated by a decimal sign. Optionally a slash follows, with a
bitmask which is also a decimal number.
This is probably best explained by a few examples:

• allowfrom 10/8; will allow connections from 10.*.*.* (a full Class A network).
The mask /8 means that the first 8 bits of the number (ie., only the 10) are signifi-
cant. On the last 3 positions of the IP address, all numbers are allowed. Given this
directive, client connections from e.g. 10.1.1.1 and 10.2.3.4 will be allowed.

• allowfrom 10.3/16; will allow all IP addresses that start with 10.3.
• allowfrom 10.3.1/16; is the same as above. The third byte of the IP address is

superfluous because the netmask specifies that only the first 16 bits (2 numbers) are
taken into account.

• allowfrom 10.3.1.15; allows traffic from only the specified IP address. There is
no bitmask; all four numbers are relevant.

• allowfrom 10.3.1.15 10.2/16; allows traffic from one IP address 10.3.1.15
or from a complete Class B network 10.2.*.*

• allowfile /tmp/myfile.txt; in combination with a file /tmp/myfile.txt,
with the contents 10.3.1.15 10.2/16, is the same as above.

Syntax: • allowfrom filter-specificication(s)
• denyfrom filter-specificication(s)
• allowfile filename
• denyfile filename

Default: In absence of these statements, all client IP’s are accepted.

4.2.11 useraccount - Limiting the effective ID of external processes

Description: Using the directive useraccount, the effective user and group ID can be re-
stricted. This comes into effect when Crossroads runs external commands, such as:

13

4 THE CONFIGURATION

• Hooks for onstart, onend or onfail;
• External dispatchers, when dispatchmode externalhandler is in effect.

Once a user name for external commands is specified, Crossroads assumes the associated
user ID and group ID before running those commands.

Syntax: useraccount username

Default: None; when unspecified, external commands are run with the ID that was in effect
when Crossroads was started.

4.3 Backend definitions
Inside the service definitions as are described in the previous section, backend definitions must
also occur. Backend definitions are started by the keyword backend, followed by an identifier
(the back end name) , and statements inside { and }:

service myservice {
...
... // statements that define the
... // service named ’myservice’
...

backend mybackend {
...
... // statements that define the
... // backend named ’mybackend’
...

}
}

Each service definition must have at least one backend definition. There may be more (and
probably will, if you want balancing and fail over) as long as the backend names differ. The
statements in the backend definition blocks are described in the following sections.

Some directives (stickycookie etc.) only have effect when Crossroads treats the network
traffic as a stream of HTTP messages; i.e., when the service is declared with type http. Incase
of type any, the HTTP-specific directives have no effect.

4.3.1 server - Specifying the back end address

Description: Each back end must be identified by the network name (server name) where it is
located. For example: server 10.1.1.23, or server web.mydomain.org. A TCP
port specifier can follow the server name, as in server web.mydomain.org:80.

Syntax: • server servername, where servername is a network name or IP address;
• server servername:port

Default: There is no default. This is a required setting.

4.3.2 verbosity - Controlling verbosity at the back end level

Description: Similar to service specifications, a backend can have its own verbosity (on or
off). When on, traffic to and fro this back end is reported.

Syntax: • verbosity setting, or
• verbose setting, where setting is true, yes or on, or false, no, off to turn it off.

Default: off

14

4 THE CONFIGURATION

4.3.3 retries - Specifying allowed failures

Description: Back ends that are ’flaky’ or on a less reliable network can be marked as unavail-
able after not just one failure, but after e.g. three. You can use this configuration if you
suspect that spurious errors cause otherwise ’good’ back ends to be marked as unavail-
able, while they in fact still could be used.

Syntax: retries number; where number is the threshold of bad connections. Once exceeded,
Crossroads will mark a back end as unavailable.

Default: 1; a back end is assumed to be unavailable after the first bad connection.

4.3.4 weight - When a back end is more equal than others

Description: To influence how backends are selected, a backend can specify its ’weight’ in the
process. The higher the weight, the less likely a back end will be chosen. The default is 1.
The weighing mechanism only applies to the dispatch modes random, byconnections,
bysize and byduration. The weight is in fact a penalty factor. E.g., if backend A
has weight 2 and backend B has weight 1, then backend B will be selected all the
time, until its usage parameter is twice as large as the parameter of A. Think of it as a
’sluggishness’ statement.

Syntax: weight number; the higher the number, the more ’sluggish’ a back end is

Default: 1; all back ends have equal weight.

4.3.5 decay - Levelling out activity of a back end

Description: To make sure that a ’spike’ of activity doesn’t influence the perceived load of a
back end forever, you may specify a certain decay. E.g, the statement decay 10 makes
sure that the load that crossroads computes for this back end (be it in seconds or in bytes)
is decreased by 10% each time that an other back end is hit. Decays are not applied to the
count of concurrent connections.
This means that when a given back end is hit, then its usage data of the transferred bytes
and the connection duration are updated using the actual number of bytes and actual
duration. However, when a different back end is hit, then the usage data are decreased
by the specified decay.

Syntax: decay number, where number is a percentage that decreases the back end usage data
when other back ends are hit.

Default: 0, meaning that no decay is applied to usage statistics.

4.3.6 onstart, onend, onfail - Action Hooks

Description: The three directives onstart, onend and onfail can be specified to start sys-
tem commands (external programs) when a connection to a back end starts, fails or ends:

• onstart commands will be run when Crossroads successfully connects to a back
end, and starts servicing;

• onend commands will be run when a (previously established) connection stops;
• onfail commands will be run when Crossroads tries to contact a back end to serve

a client, but the back end can’t be reached.

The format is always ontype command. The command is an external program, optionally
followed by arguments. The command is expanded according to the following table:

• %a is the availability of the current back end, when a current back end is established;

15

4 THE CONFIGURATION

• %1a is the availability of the first back end (0 when unavailable, 1 if available); %2a
is the availability of the second back end, and so on;

• %b is the name of the current back end, when one is established;
• %1b is the name of the first back end, %2b of the second back end, and so on;
• %e is the count of seconds since start of epoch (January 1st 1970 GMT);
• %r is the IP address of the client that requests a connection and for whom the external

dispatcher should compute a back end;
• %s is the name of the current service that the client connected to;
• %t is the current local time in ASCII format, in YYYY-MM-DD/hhh:mm:ss;
• %T is the current GMT time in ASCIII format;
• %v is the Crossroads version;
• Any other chararacter following a % sign is taken literally; e.g. %z is just a z.

Syntax: • onstart commandline
• onend commandline
• onfail commandline
• onsuccess commandline

Default: There is no default. Normally no external programs are run upon connection, success
or failure of a back end.

4.3.7 trafficlog and throughputlog - Debugging and Performance Aids

Description: Two directives are available to log network traffic to files. They are trafficlog
and throughputlog.
The trafficlog statement causes all traffic to be logged in hexadecimal format. Each
line is prefixed by B or C, depending on whether the information was received from the
back end or from the client.
The throughputlog statement writes shorthand transmissions to its log, accompanied
by timings.

Syntax: • trafficlog filename
• throughputlog filename

Default: none

4.3.8 stickycookie - Back end selection with an HTTP cookie

Description: The directive stickycookie value causes Crossroads to unpack clients’ requests,
to check for value in the cookies. When found, the message is routed to the back end hav-
ing the appropriate stickycookie directive.
E.g., consider the following configuration:

service ... {
...
backend one {

...
stickycookie "BalancerID=first";

}
backend two {

...
stickycookie "BalancerID=second";

}
}

16

4 THE CONFIGURATION

When clients’ messages contain cookies named BalancerID with the value first, then
such messages are routed to backend one. When the value is second then they are routed
to the backend two.
There are basically to provide such cookies to a browser. First, a back end can insert such a
cookie into the HTTP response. E.g., the webserver of back end one might insert a cookie
named BalancerID, having value first. Second, Crossroads can insert such cookies
using a carefully crafted directive addclientheader.

Syntax: stickycookie cookievalue

Default: There is no default.

4.3.9 HTTP Header Modification Directives

Description: Crossroads understands the following header modification directives: addclientheader,
appendclientheader, setclientheader, addserverheader, appendserverheader,
setserverheader.
The directive names always consist of ActionDestinationheader, where:

• The action is add, append or insert.
– Action add adds a header, even when headers with the same name already are

present in an HTTP message. Adding headers is useful for e.g. Set-Cookie
headers; a message may contain several of such headers.

– Action append adds a header if it isn’t present yet in an HTTP message. If such a
header is already present, then the value is appended to the pre-existing header.
This is useful for e.g. Via headers. Imagine an HTTP message with a header
Via: someproxy. Then the directive appendclientheader "Via: crossroads"
will rewrite the header to Via: someproxy; crossroads.

– Action set overwrites headers with the same name; or adds a new header if no
pre-existing is found. This is useful for e.g. Host headers.

• The destination is one of client or server. When the destination is server,
then Crossroads will apply such directives to HTTP messages that originate from
the browser and are being forwarded to back ends. When the destination is client,
then Crossroads will apply such directives to backend responses that are shuttled to
the browser.

The format of the directives is e.g. addclientheader "X-Processed-By: Crossroads".
The directives expect one argument; a string, consisting of a header name, a colon, and a
header value. As usual, the directive must end with a semicolon.
The header value may contain one of the following formatting directives:

• %a is the availability of the current back end, when a current back end is established;
• %1a is the availability of the first back end (0 when unavailable, 1 if available); %2a

is the availability of the second back end, and so on;
• %b is the name of the current back end, when one is established;
• %1b is the name of the first back end, %2b of the second back end, and so on;
• %e is the count of seconds since start of epoch (January 1st 1970 GMT);
• %r is the IP address of the client that requests a connection and for whom the external

dispatcher should compute a back end;
• %s is the name of the current service that the client connected to;
• %t is the current local time in ASCII format, in YYYY-MM-DD/hhh:mm:ss;
• %T is the current GMT time in ASCIII format;
• %v is the Crossroads version;
• Any other chararacter following a % sign is taken literally; e.g. %z is just a z.

17

4 THE CONFIGURATION

The following examples show common uses of header modifications.
Enforcing session stickiness: By combining stickycookie and addclientheader,

HTTP session stickiness is enforced. Consider the following configuration:
service ... {

...
backend one {

...
addclientheader "Set-Cookie: BalancerID=first; path=/";
stickycookie "BalancerID=first";

}
backend two {

...
addclientheader "Set-Cookie: BalancerID=second; path=/";
stickycookie "BalancerID=second";

}
}

The first request of an HTTP session is balanced to either backend one or two. The
server response is enriched using addclientheader with an appropriate cookie.
A subsequent request from the same browser now has that cookie in place; and is
therefore sent to the same back end where the its predecessors went.

Hiding the server software version: Many servers (e.g. Apache) advertize their version,
as in Server: Apache 1.27. This potentially provides information to attackers.
The following configuration hides such information:
service ... {

...
backend one {

...
setclientheader "Server: WWW-Server";

}
}

Informing the server of the clients’ IP address: Since Crossroads sits ’in the middle’ be-
tween a client and a back end, the back end perceives Crossroads as its client. The
following sends the true clients’ IP address to the server, in a header X-Real-IP:
service ... {

...
backend one {

...
setserverheader "X-Real-IP: %r";

}
}

Keep-Alive Downgrading: The directives setclientheader and setserverheader
also play a key role in downgrading Keep-Alive connections to ’single-shot’. E.g., the
following configuration makes sure that no Keep-Alive connections occur.
service ... {

...
backend one {

...
setserverheader "Connection: close";
setclientheader "Connection: close";

}
}

Syntax: • addclientheader Headername: headervalue to add a header in the traffic to-
wards the client, even when another header Headername exists;

18

5 TIPS, TRICKS AND RANDOM REMARKS

• appendclientheader Headername: headervalue to append headervalue to an exist-
ing header Headername in the traffic towards the client, or to add the whole header
alltogether;

• setclientheader Headername: headervalue to overwrite an existing header in the
traffic towards the client, or to add such a header;

• addserverheader Headername: headervalue to add a header in the traffic towards
the server, even when another header Headername exists;

• appendserverheader Headername: headervalue to append headervalue to an exist-
ing header Headername in the traffic towards the server, or to add the whole header
alltogether;

• setserverheader Headername: headervalue to overwrite an existing header in the
traffic towards the server, or to add such a header.

Default: There is no default.

5 Tips, Tricks and Random Remarks
The following sections elaborate on the directives as described in section 4 to illustrate how
crossroads works and to help you achieve the "optimal" balancing configuration.

5.1 How back ends are selected in load balancing
In order to tune your load balancing, you’ll need to understand how crossroads computes
usage, how weighing works, and so on. In this section we’ll focus on the dispatching modes
bysize, byduration and byconnections only. The other dispatching types are self-explanatory.

5.1.1 Bysize, byduration or byconnections?

As stated before, crossroads doesn’t know ’what a service does’ and how to judge whether a
given back end is very busy or not. You must therefore give the right hints:

• In general, a service which is CPU bound, will be more busy when it takes longer to
process a request. The dispatch mode byduration is appropriate here.

• In contrast, a service which is filesystem bound, will be more busy when more data are
transferred. The dispatch mode bysize is apppropriate.

• The dispatch mode byduration can also be used when network latency is an issue.
E.g., if your balancer has back ends that are geograpically distributed, then byduration
would be a good way to select best available back ends.

• Furthermore it is noteworthy that dispatchmode byduration is not usable for inter-
active processes such as SSH logins. Idle time of a login adds to the duration, while caus-
ing (almost) no load. Mode byduration should only be used for automated processes
that don’t wait for user interaction (e.g., SOAP calls and other HTTP requests).

• As a last remark, the dispatching mode byconnections can be used if you don’t have
other clues for load estimations.
E.g., consider a database connection. What’s heavier on the back end, time-consuming
connections, or connections where loads of bytes are transferred? Well, that depends.
A tough select query that joins multiple tables can be very heavy on the back end,
though the response set can be quite small - and hence the number of transferred bytes.
That would suggest dispatching by duration. However, byduration balancing doesn’t
respresent the true world, when interactive connections can occur where users have an
idle TCP connection to the database: this consumes time, but no bytes (see the SSH login
example above). In this case, the dispatch mode byconnections may be your best bet.

19

5 TIPS, TRICKS AND RANDOM REMARKS

5.1.2 Averaging size and duration

The configuration statement dispatchmode bysize or byduration allows an optional mod-
ifier over number, where the stated number represents a connection count. When this modifier
is present, then crossroads will use a moving average over the last n connections to compute
duration and size figures.

In the real world you’ll always want this modifier. E.g., consider two back ends that are
running for years now, and one of them is suddenly overloaded and very busy (it experiences
a ’spike’ in activity). When the over modifier is absent, then the sudden load will hardly show
up in the usage figures – it will flatten out due to the large usage figures already stored in the
years of service.

In contrast, when e.g. over 3 is in effect, then a sudden load does show up – because it
highly contributes to the average of three connections.

5.1.3 Specifying decays

Decays are also only relevant when crossroads computes the ’next best back end’ by size (bytes)
or duration (seconds). E.g., imagine two back ends A and B, both averaged over say 3 connec-
tions.

Now when back end A is suddenly hit by a spike, its average would go up accordingly. But
the back end would never again be used, unless B also received a similar spike, because A’s
’usage data’ over its last three connections would forever be larger than B’s data.

For that reason, you should in real situations probably always specify a decay, so that the
backend selection algorithm recovers from spikes. Note that the usage data of the back end
where a decay is specified, decay when other back ends are hit. The decay parameter is like
specifying how fast your body regenerates when someone else does the work.

The below configuration illustrates this:

/* Definition of the service */
service soap {

/* Local TCP port */
port 8080;

/* We’ll select back ends by the processing

* duration

*/
dispatchmode byduration over 3;

/* First back end: */
backend A {

/* Back end IP address and port */
server 10.1.1.1:8080;

/* When this back end is NOT hit because

* the other one was less busy, then the

* usage parameters decay 10% per connection

*/
decay 10;

}

/* Second back end: */
backend B {

server 10.1.1.2:8080;
decay 10;

}

20

5 TIPS, TRICKS AND RANDOM REMARKS

}

5.1.4 Adjusting the weights

The back end modifier weight is useful in situations where your back ends differ in respect
to performance. E.g,. your back ends may be geographically distributed, and you know that a
given back end is difficult to reach and often experiences network lag.

Or you may have one primary back end, a system with a fast CPU and enough memory,
and a small fall-back back end, with a slow CPU and short on memory. In that case you know
in advance that the second back end should be used only rarely. Most requests should go to the
big server, up to a certain load.

In such cases you will know in advance that the best performing back ends should be se-
lected the most often. Here’s where the weight statement comes in: you can simply increase
the weight of the back ends with the least performance, so that they are selected less frequently.

E.g., consider the following configuration:

service soap {
port 8080;
dispatchmode byduration over 3;
backend A {

server 10.1.1.1:8080;
decay 20;

}
backend B {

server 10.1.1.2:8080;
weight 2;
decay 10;

}
backend C {

server 10.1.1.3:8080;
weight 4;
decay 5;

}
}

This will cause crossroads to select back ends by the processing time, averaging over the
last three connections. However, backend B will kick in only when its usage is half of the usage
of A (back end B is probably only half as fast as A). Backend C will kick in only when its usage
is a quarter of the usage of A, which is half of the usage of B (back end C is probably very
weak, and just a fall-back system incase both A and B crash). Note also that A’s usage data
decay much faster than B’s and C’s: we’re assuming that this big server recovers quicker than
its smaller siblings.

5.2 Throttling the number of concurrent connections
If you suspect that your service may occasionally receive ’spikes’ of activity5, then it might be a
good idea to protect your service by specifying a maximum number of concurrent connections.
This protection can be specified on two levels:

On the service level a statement like maxconnections 100; states that the service as a whole
will never service more than 100 concurrent connections. This means that all your back
ends and the crossroads balancer itself will be protected from being overloaded.

5which you should always assume

21

5 TIPS, TRICKS AND RANDOM REMARKS

On the back end level a statement like maxconnections 10; states that this particular back
end will never have more than 10 concurrent connections; regardless of the overall setting
on the service level. This means that this particular back end will be protected from being
overloaded (regardless of what other back ends may experience).

The maxconnections statement, combined with a back end selection algorithm, allows
very fine granularity. The maxconnections statement on the back end level is like a hand
brake: even when you specify a back end algorithm that would protect a given back end
from being used too much, a situation may occur where that back end is about to be hit. A
maxconnections statement on the level of that back may then protect it.

5.3 Using an external program to dispatch
As mentioned before, Crossroads supports several built-in dispatch modes. However, you are
always free to hook-in your own dispatch mode that determines the next back end using your
own specific algorithm. This section explains how to do it.

5.3.1 Configuring the external handler

First, the dispatchmode statement needs to inform Crossroads that an external program will
do the job. The syntax is: dispatchmode externalhandler program arguments. The pro-
gram must point to an executable program that will be started by Crossroads. The specifier
arguments can be anything you want; those will be the arguments to Crossroads. You can how-
ever use the following special format specifiers:

• %a is the availability of the current back end, when a current back end is established;

• %1a is the availability of the first back end (0 when unavailable, 1 if available); %2a is the
availability of the second back end, and so on;

• %b is the name of the current back end, when one is established;

• %1b is the name of the first back end, %2b of the second back end, and so on;

• %e is the count of seconds since start of epoch (January 1st 1970 GMT);

• %r is the IP address of the client that requests a connection and for whom the external
dispatcher should compute a back end;

• %s is the name of the current service that the client connected to;

• %t is the current local time in ASCII format, in YYYY-MM-DD/hhh:mm:ss;

• %T is the current GMT time in ASCIII format;

• %v is the Crossroads version;

• Any other chararacter following a % sign is taken literally; e.g. %z is just a z.

Note that the format specifiers such as %b don’t make sense in the phase in which an external
handler is called, since there is no current back end yet (the job of the handler is to supply one).

5.3.2 Writing the external handler

The external handler is activated using the arguments that are specified in /etc/crossroads.conf.
The external handler can do whatever it wants, but ultimately, it must write a back end name
on its stdout. Crossroads reads this, and if the back end is available, uses that back end for the
connection.

22

5 TIPS, TRICKS AND RANDOM REMARKS

5.3.3 Examples of external handlers

This section shows some examples of Crossroads configurations vs. external handlers. The
sample handlers that are shown here, are also included in the Crossroads distribution, un-
der the directory etc/. Also note that the examples shown here are just quick-and-dirty Perl
scripts, meant to illustrate only. Your applications may need other external handlers, but you
can use the shown scripts as a starting point.

Round-robin dispatching This example is trivial in the sense that round-robin dispatching
is already built into Crossroads, so that using an external handler for this purpose only slows
down Crossroads. However, it’s a good starting example.

The Crossroads configuration is shown below:

service test {
port 8001;
verbosity on;
revivinginterval 5;

dispatchmode externalhandler
/usr/local/src/crossroads/etc/dispatcher-roundrobin

%1b %1a %2b %2a;

backend testone {
server localhost:3128;
verbosity on;

}
backend testtwo {

server locallhost:3128;
verbosity on;

}
}

The relevant dispatchmode statement invokes the external program dispatcher-roundrobin
with four arguments: the name of the first back end (testone), its availability (0 or 1), the name
of the second back end (testtwo) and its availability (0 or 1).

The external handler, which is also included in the Crossroads distribution, is shown below.
It is a Perl script.

#!/usr/bin/perl

use strict;

Example of a round-robin external dispatcher. This is totally
superfluous, Crossroads has this on-board; if you use the external
program for determining round-robin dispatching, then you’ll only
slow things down. This script is just meant as an example.

Globals / configuration

my $log = ’/tmp/exthandler.log’; # Debug log, set to /dev/null to suppress
my $statefile = ’/tmp/rr.last’; # Where we keep the last used

Logging

sub msg {

return if ($log eq ’/dev/null’ or $log eq ’’);

23

5 TIPS, TRICKS AND RANDOM REMARKS

open (my $of, ">>$log") or return;
print $of (scalar(localtime()), ’ ’, @_);

}

Read the last used back end

sub readlast() {

my $ret;

if (open (my $if, $statefile)) {
$ret = <$if>;
chomp ($ret);
close ($if);
msg ("Last used back end: $ret\n");
return ($ret);

}
msg ("No last-used back end (yet)\n");
return (undef);

}

Write back the last used back end, reply to Crossroads and stop

sub reply ($) {

my $last = shift;

if (open (my $of, ">$statefile")) {
print $of ("$last\n");

}
print ("$last\n");
exit (0);

}

Main starts here

Collect the cmdline arguments. We expect pairs of backend-name /
backend-availablility, and we’ll store only the available ones.
msg ("Dispatch request received\n");
my @backend;
for (my $i = 0; $i <= $#ARGV; $i += 2) {

push (@backend, $ARGV[$i]) if ($ARGV[$i + 1]);
}
msg ("Available back ends: @backend\n");

Let’s see what the last one is. If none found, then we return the
first available back end. Otherwise we need to go thru the list of
back ends, and return the next one in line.
my $last = readlast();
if ($last eq ’’) {

msg ("Returning first available back end $backend[0]\n");
reply ($backend[0]);

}

There **was** a last back end. Try to match it in the list,

24

5 TIPS, TRICKS AND RANDOM REMARKS

then return the next-in-line.
for (my $i = 0; $i < $#backend; $i++) {

if ($last eq $backend[$i]) {
msg ("Returning next back end ", $backend[$i + 1], "\n");
reply ($backend[$i + 1]);

}
}

No luck.. run back to the first one.
msg ("Returning first back end $backend[0]\n");
reply ($backend[0]);

The working of the script is basically as follows:

• The argument list is scanned. Back ends that are available are collected in an array
@backend.

• The script queries a state file /tmp/rr.last. If a back end name occurs there, then the
next back end is looked up in @backend and returned to Crossroads. If no last back is un-
known or can’t be matched, then the first available back end (first element of @backend)
is returned to Crossroads.

• Informing Crossroads is done via the subroutine reply(). This code writes the selected
back end to file /tmp/rr.last (for future usage) and prints the back end name to stdout.

• The script logs its actions to a file /tmp/exthandler.log. This log file can be inspected
for the script’s actions.

Dispatching by the client IP address The following example shows a useful real-life sit-
uation that illustrates how dispatching by client IP address works. Note that as of Crossroads
1.31, dispatchmode byclientip is implemented – so that the below description is some-
what superfluous. The code snippets however can help you in modelling your own specific
dispatch modes, aided by external helpers.

The situation is as follows:

• Crossroads is used as a single-address point to forward Remote Desktop requests to a
farm of Windows systems, where users can work via remote access;

• However, users may stop their session, and when they re-connect, they expect to be sent
to the Windows system that they had worked on previously;

• Client PC’s have their distinct IP addresses, which distinguishes them.

• Of four windows systems, two are large servers, and two are small ones. We’ll want to
assign large servers to clients when we have a choice.

The requirements resemble session stickiness in HTTP, except that the remote desktop pro-
tocol doesn’t support stickiness. This situation is a perfect example of how an external handler
can help:

• A suitable dispatch mode isn’t yet available in Crossroads, but can be easily coded in an
external handler;

• The potential delay due to the calling of an external handler won’t even be noticed. This
is a network service where the connection time isn’t critical; we’d expect only a few (albeit
lengthy) TCP connections.

The approach to the solution of this problem uses several external program hooks:

• An external dispatcher handler will be responsible for suggesting a back end, given a
client IP and given the current timestamp. This handler will consult an internal admin-
istration to see whether the stated IP address should re-use a back end, or to determine
which back end is free for usage.

25

5 TIPS, TRICKS AND RANDOM REMARKS

• An external hook onstart will be responsible for updating the internal administration;
i.e., to flag a back end as ’occupied’.

• The external hooks onfailure and onend will be responsible for flagging a back end
as ’free’ again; i.e., for erasing any previous information that states that the back end was
occupied.

The Crossroads configuration is shown below. Only four Windows back ends are shown.
Each back end is configured on a given IP address, port 3389, and is limited to one concurrent
connection (otherwise a new user might ’steal’ a running desktop session).

service rdp {
port 3389;
revivinginterval 5;

/* rdp-helper dispatch IP STAMP ... will suggest a back end to use,

* arguments are for all back ends: name, availability, weight */
dispatchmode externalhandler

/usr/local/src/crossroads/etc/rdp-helper dispatch %r %e
%1b %1a %1w
%2b %2a %2w
%3b %3a %3w
%4b %4a %4w;

backend win1 {
server 10.1.1.1:3389;
maxconnections 1;
/* rdp-helper start IP STAMP BACKEND will log the actual start

* of a connection;

* rdp-helper end IP will log the ending of a connection */
onstart /usr/local/src/crossroads/etc/rdp-helper start %r %e %b;
onend /usr/local/src/crossroads/etc/rdp-helper end %r;
onfail /usr/local/src/crossroads/etc/rdp-helper end %r;

}
backend win2 {

server 10.1.1.2:3389;
maxconnections 1;
onstart /usr/local/src/crossroads/etc/rdp-helper start %r %e %b;
onend /usr/local/src/crossroads/etc/rdp-helper end %r;
onfail /usr/local/src/crossroads/etc/rdp-helper end %r;

}
backend win3 {

server 10.1.1.3:3389;
maxconnections 1;
weight 2;
onstart /usr/local/src/crossroads/etc/rdp-helper start %r %e %b;
onend /usr/local/src/crossroads/etc/rdp-helper end %r;
onfail /usr/local/src/crossroads/etc/rdp-helper end %r;

}
backend win4 {

server 10.1.1.4:3389;
maxconnections 1;
weight 3;
onstart /usr/local/src/crossroads/etc/rdp-helper start %r %e %b;
onend /usr/local/src/crossroads/etc/rdp-helper end %r;
onfail /usr/local/src/crossroads/etc/rdp-helper end %r;

26

5 TIPS, TRICKS AND RANDOM REMARKS

}
}

Depending on the dispatcher stage, the exernal handler rdp-helper is invoked in different
ways:

During dispatching the helper is called to suggest a back end. The arguments are an action
indicator dispatch, the client’s IP address, the timestamp, and four triplets that repre-
sent back ends: per back end its name, its availability, and its weight. The purpose of the
helper is to tell Crossroads which back end to use.

During connection start the helper will be invoked to inform it of the start of a connection,
given a client IP address.

When a connection terminates the helper will be invoked to inform it that the connection has
ended.

Here’s the external handler as Perl script. It uses the module GDBM_File which most likely
will not be part of standard Perl distributions, but can be added using CPAN. (Alternatively,
any other database module can be used.)

#!/usr/bin/perl

use strict;
use GDBM_File;

Global variables and configuration

my $log = ’/tmp/exthandler.log’; # Debug log, set to /dev/null to suppress
my $cdb = ’/tmp/client.db’; # GDBM database of clients
my %db; # .. and memory representation of it
my $timeout = 24*60*60; # Timeout of a connection in secs

Logging

sub msg {

return if ($log eq ’/dev/null’ or $log eq ’’);
open (my $of, ">>$log") or return;
print $of (scalar(localtime()), ’ ’, @_);
close ($of);

}

Reply a back end to the caller and stop processing.

sub reply ($) {

my $b = shift;
msg ("Suggesting $b to Crossroads.\n");
print ("$b\n");
exit (0);

}

Is a value in an array

sub inarray {

my $val = shift;
for my $other (@_) {

return (1) if ($other eq $val);

27

5 TIPS, TRICKS AND RANDOM REMARKS

}
return (0);

}

A connection is starting

sub start {

my ($ip, $stamp, $backend) = @_;
msg ("Logging START of connection for IP $ip on stamp $stamp, ",

"back end $backend\n");
$db{$ip} = "$backend:$stamp";

}

A connection has ended

sub end {

my $ip = shift;
msg ("Logging END of connection for IP $ip\n");
$db{$ip} = undef;

}

Request to determine a back end

sub dispatch {

my $ip = shift;
my $stamp = shift;

msg ("Request to dispatch IP $ip on stamp $stamp\n");

Read the next arguments. They are triplets of
backend-name / availability / weight. Store if the back end is
available.
my (@backends, @weights);
for (my $i = 0; $i < $#_; $i += 3) {

if ($_[$i + 1] != 0) {
push (@backends, $_[$i]);
push (@weights, $_[$i + 2]);
msg ("Candidate back end: $_[$i] with weight ", $_[$i + 2], "\n");

}
}

See if this is a reconnect by a previously seen client IP. We’ll
treat this as a reconnect if the timeout wasn’t yet exceeded.
if ($db{$ip} ne ’’) {

my ($last_backend, $last_stamp) = split (/:/, $db{$ip});
msg ("IP $ip had last connected on $last_stamp to $last_backend\n");
if ($stamp < $last_stamp + $timeout) {

msg ("Timeout not yet exceeded, this may be a reconnect\n");
We’ll allow a reconnect only if the stated last_backend is
free (sanity check).
if (inarray ($last_backend, @backends)) {

msg ("Last back end $last_backend is available, ",
"letting through\n");

reply ($last_backend);

28

5 TIPS, TRICKS AND RANDOM REMARKS

} else {
msg ("Last used back end isn’t free, suggesting a new one\n");

}
} else {

msg ("Timeout exceeded, suggesting a new back end\n");
}

} else {
msg ("Np preveious connection data, suggesting a new back end\n");

}

my $bestweight = -1;
my $bestbackend;
for (my $i = 0; $i <= $#weights; $i++) {

if ($bestweight == -1 or $bestweight > $weights[$i]) {
$bestweight = $weights[$i];
$bestbackend = $backends[$i];

}
}

msg ("Best back end: $bestbackend (given weight $bestweight)\n");
reply ($bestbackend);

}

Main starts here

msg ("Start of run, attaching GDBM database ’$cdb’\n");
tie (%db, ’GDBM_File’, $cdb, &GDBM_WRCREAT, 0600);

The first argument must be an action ’dispatch’, ’start’ or ’end’.
Depending on the action, we do stuff.
my $action = shift (@ARGV);
if ($action eq ’dispatch’) {

dispatch (@ARGV);
} elsif ($action eq ’start’) {

start (@ARGV);
} elsif ($action eq ’end’) {

end (@ARGV);
} else {

print STDERR ("Usage: rdp-helper {dispatch|start|end} args\n");
exit (1);

}

5.4 TCP Session Stickiness
If you need to make sure that a client that once gets dispatched to a given back end keeps
re-visiting the back end, then Crossroads offers the dispatch mode byclientip. This mode
will only work when each client is seen by Crossroads with its own specific IP address; ie., this
method won’t work when clients reach Crossroads through a masquerading firewall (in which
case all clients would be seen as having the firewall’s IP address).

The dispatchmode byclientip works as follows:

• The client’s IP address is taken in its string representation and ’hashed’ into a number.

• The number is brought back to the number of available back ends (using a modulo-
operation).

29

5 TIPS, TRICKS AND RANDOM REMARKS

• The result defines the back end of choice.

If the preferred back end is unavailable, then the action that Crossroads takes is to dispatch
as if byconnections: of the available back ends, the one with the least connections is taken.

5.5 HTTP Session Stickiness
This section focuses on HTTP session stickiness. This term refers to the ability of a balancer to
route a conversation between browser and a backend farm with webservers always to the same
back end. In other words: once a back end is selected by the balancer, it will remain the back
end of choice, even for subsequent connections.

5.5.1 Don’t use stickiness!

The rule of thumb as far as the balancer is concerned, is: Do not use HTTP session sticki-
ness unless you really have to. Enabling session stickiness hampers failover, balancing and
performance:

• Failover is hampered because during the session, the balancer has to assign new connec-
tions to the same back end that was selected at the start of a session. If the back end
suddenly goes ’down’, then the session will most likely crash. (Actually, when a back end
becomes unreachable in the middle of a session, Crossroads will assign a new back end to
that session. This will most likely result in a malfunction of the underlying application.)

• Balancing is hampered because at the start of the session, the balancer has selected the
next-best back end. But during the session, that back end may well become overloaded.
The balancer however must continue to send the requests there.

• Performance is hampered because crossroads needs to ’unpack’ messages as they are
passed to and fro. That’s because crossroads needs to check the HTTP headers in the
messages for persistence cookies.

There is a number of measures that you can take to avoid using session stickiness. E.g.,
session data can be ’shared’ between web back ends. PHP offers functionality to store session
data in a database, so that all PHP applications have access to these data. Application servers
such as Websphere can be configured to replicate session data between nodes.

5.5.2 But if you must..

If you really need stickiness, think first whether you might use TCP stickiness (using the client’s
IP address to dispatch). If you can, then this is the preferred method, since Crossroads won’t
have to unpack TCP streams. Below is a short configuration example:

service www {
port 80;
type any;
revivinginterval 15;
dispatchmode byclientip;

backend one {
server 10.1.1.100:80;

}

backend two {
server 10.1.1.101:80;

}
}

30

5 TIPS, TRICKS AND RANDOM REMARKS

However, if you must use HTTP-base session stickiness, then proceed as follows:

• At the level of a service description, set the type to http.
• At the level of each back end description, configure the stickycookie and a addclientheader

directives.

Once crossroads sees that, it will examine each HTTP message that it shuttles between client
and back end:

• If there is no persistence cookie in the HTTP headers of a client’s request, then the message
must be the first one and a new session should be established. Crossroads selects an
appropriate back end, sends the message to that back end, catches the reply, and inserts a
Set-Cookie directive.

• If there is a persistence cookie in the HTTP headers of a client’s request, then the request
is part of an already established session. Crossroads analyzes the cookie and forwards
the request to the appropriate back end.

Below is a short example of a configuration.

service www {
port 80;
type http;
revivinginterval 15;
dispatchmode byconnections;

backend one {
server 10.1.1.100:80;
stickycookie XRID=100;
addclientheader "Set-Cookie: XRID=100; Path=/";

}

backend two {
server 10.1.1.101:80;
stickycookie XRID=101;
addclientheader "Set-Cookie: XRID=101; Path=/";

}
}

Note how the cookie names and values in the directives stickycookie and addclientheader
match. That is obviously a prerequisite for stickiness.

5.6 Passing the client’s IP address
Since Crossroads just shuttles bytes to and fro, meta-information of network connections is lost.
As far as the back ends are concerned, their connections originate at the Crossroads junction.
For example, standard Apache access logs will show the IP address of Crossroads.

In order to compensate for this, Crossroads can insert a special header in HTTP connections,
to inform the back end of the original client’s IP address. In order to enable this, the Crossroads
configuration must state the following:

• The service type must be http, and not any;
• In the back end definition, the following statement must occur:
addserverheader "X-Real-IP: %r";
You are of course free to choose the header name; the here used X-Real-IP is a common
name for this purpose.

After this, HTTP traffic that arrives at the back ends has a new header: X-Real-IP, holding
the client’s IP address. Note that once the type is set to http, Crossroads’ performance will be
hampered – all passing messages will have to be unpacked and analyzed.

31

5 TIPS, TRICKS AND RANDOM REMARKS

5.6.1 Sample Crossroads configuration

The below sample configuration shows two HTTP back ends that receive the client’s IP address:

service www {
port 80;
type http;
revivinginterval 5;
dispatchmode roundrobin;

backend one {
server 10.1.1.100:80;
addserverheader "X-Real-IP: %r";

}

backend two {
server 10.1.1.200:80;
addserverheader "X-Real-IP: %r";

}
}

5.6.2 Sample Apache configuration

The method by which each back end analyzes the header X-Real-IP will obviously be differ-
ent per server implementations. However, a common method with the Apache webserver is to
log the client’s IP address into the access log.

Often this is accomplished using the log format custom, defined as follows:

LogFormat "%h %l %u %t %D \"%r\" %>s %b" common
CustomLog logs/access_log common

The first line defines the format common, with the remote host specified by %h. The second
line sends access information to a log file logs/access_log, using the previously defined
format common.

Furtunately, Apache’s LogFormat allows one to log contents of headers. By replacing the
%h with %{X-Real-IP}i, the desired information is sent to the log. Therefore, normally you
can simply redefine the common format to

LogFormat "%{X-Real-IP}i %l %u %t %D \"%r\" %>s %b" common

5.7 Debugging network traffic
Incase the traffic between client and backend must be debugged, the statement trafficlog
filename can be issued. This causes the traffic to be dumped in hexadecimal format to the stated
filename.

Traffic sent by the client is prefixed by a C, traffic sent by the back end is prefixed by a B.
Below is a sample traffic dump of a browser trying to get a HTML page. The server replies that
the page was not modified.

C 0000 47 45 54 20 68 74 74 70 3a 2f 2f 77 77 77 2e 63 GET http://www.c
C 0010 73 2e 68 65 6c 73 69 6e 6b 69 2e 66 69 2f 6c 69 s.helsinki.fi/li
C 0020 6e 75 78 2f 6c 69 6e 75 78 2d 6b 65 72 6e 65 6c nux/linux-kernel
C 0030 2f 32 30 30 31 2d 34 37 2f 30 34 31 37 2e 68 74 /2001-47/0417.ht
C 0040 6d 6c 20 48 54 54 50 2f 31 2e 31 0d 0a 43 6f 6e ml HTTP/1.1..Con
C 0050 6e 65 63 74 69 6f 6e 3a 20 63 6c 6f 73 65 0d 0a nection: close..
.
. etcetera

32

5 TIPS, TRICKS AND RANDOM REMARKS

.
B 0000 48 54 54 50 2f 31 2e 30 20 33 30 34 20 4e 6f 74 HTTP/1.0 304 Not
B 0010 20 4d 6f 64 69 66 69 65 64 0d 0a 44 61 74 65 3a Modified..Date:
B 0020 20 54 75 65 2c 20 31 32 20 4a 75 6c 20 32 30 30 Tue, 12 Jul 200
B 0030 35 20 30 39 3a 34 39 3a 34 37 20 47 4d 54 0d 0a 5 09:49:47 GMT..
B 0040 43 6f 6e 74 65 6e 74 2d 54 79 70 65 3a 20 74 65 Content-Type: te
B 0050 78 74 2f 68 74 6d 6c 3b 20 63 68 61 72 73 65 74 xt/html; charset
.
. etcetera
.

Turning on traffic dumps will significantly slow down crossroads.
Besides trafficlog, there is also a directive throughputlog. This directive also takes

one argument, a filename. The file is appended, and the following information is logged:

• The process ID of the crossroads image that serves the TCP connection;

• The time of the request, in seconds and microseconds since start of the run;

• A C when the request originated at the client, or B when the request originated at the
back end;

• The first 100 bytes of the request.

As an example, consider the following (the lines are shortened for brevity and prefixed by
line numbers for clarity):

1 0000594 0.000001 C GET http://public.e-tunity.com/index.html...
2 0000594 0.173713 B HTTP/1.0 200 OK..Date: Fri, 18 Nov 2005 0...
3 0000594 0.278125 B width="100" bgcolor="#e0e0e0" valign="to...
4 0000595 0.000001 C GET http://public.e-tunity.com/css/style/...
5 0000594 0.944339 B /a></td>.. </tr>.</table>.</td><td class...
6 0000594 0.946356 B smallboxdownl">Download</td>.. <td class...
7 0000594 0.961102 B td><td class="smallboxodd" valign="top"><...
8 0000595 0.698215 B HTTP/1.0 304 Not Modified..Date: Fri, 18 ...

This tells us that:

• Line 1: PID 594 served a request that originated at the client. The corresponding time is
(almost) 0 seconds, so this is really the start of the run.

• Line 2: A back end replied 0.17 seconds later, and 0.28 seconds later, it was still replying
(this is the third line, again a B-type transmission).

• Line 4: PID 595 served a request that originated at the client. Again, the corresponding
time is (almost) 0 seconds, since this is the first conversation part of this connection.

• Lines 5 to 7: This is the continuation of line 2. Line 7 is the last line of the B series (not
visible from the example, but trust me, it is), so that we may conclude that it took the back
end 0.96 seconds to serve the file index.html requested in line 1.

• Line 8: This is the answer to the client’s request of line 4 (you can tell by the process ID
number). So the back end took 0.68 seconds to confirm that the stylesheet requested in
line 4 wasn’t modified.

It is also worth while remembering that the start time of a C request is the time that cross-
roads sees the activity. Any latency between the true client and crossroads is obviously not
included. This is illustrated by the below simple ASCII art:

client ---->---->---->--->*crossroads ====>====>====>
\

back end

33

5 TIPS, TRICKS AND RANDOM REMARKS

/
client ----<----<----<---< crossroads ====<====<====<

This simple picture shows a typical HTTP request that originates at a client, travels to cross-
roads, and is relayed via the back end. The C entry in a throughput log is the time when
crossroads sees the request, indicated by an asterisk. The B entries are the times that it takes
the back end to answer, indicated by === style lines. Therefore, the true roundtrip time will be
longer than the number of seconds that are logged in the throughput log: the latency between
client and crossroads isn’t included in that measurement.

Summarizing, the throughput times of a client-back end connection can be analyzed using
the directive throughputlog. In a real-world analysis, you’d probably want to write up a
script to analyze the output and to compute round trip times. Such scripts are not (yet) included
in Crossroads.

5.8 IP filtering: Limiting Access by Client IP Address
5.8.1 General Examples

The directives allowfrom, denyfrom, allowfile and denyfile can be used to instruct
Crossroads to specifically allow access by using a "whitelist" of IP addresses, or to specifically
deny access by using a "blacklist". E.g., the following configuration allows access to service
webproxy only to localhost:

service webproxy {
port 8000;
allowfrom 127.0.0.1;
backend one {

.

. Back end definitions occur here

.
}
.
. Other back ends or other service directives
. may occur here
.

}

In this example there is a "whitelist" having only one entry: IP address 127.0.0.1, or localhost.
(Incidentally, the same behaviour could be accomplished by stating bindto 127.0.0.1, in which
case Crossroads would only listen to the local network device.)

In the same vein, the directive allowfrom 127.0.0.1 192.168.1/24 would allow ac-
cess to localhost and to all IP addresses that start with 192.168.1. The specifier 192.168.1/24
states that there are three network bytes (192, 168 and 1), and 24 bits (or 3 bytes) are relevant;
so that the fourth network byte doesn’t matter.

5.8.2 Using External Files

The directives allowfile and denyfile allow you to specify IP addresses in external files.
The Crossroads configuration states e.g. allowfile /tmp/allow.txt, and the IP addresses
are then in /tmp/allow.txt. The format of /tmp/allow.txt is as follows:

• The specifications follow again p.q.r.s/mask, where p, q, r and s are network bytes which
can be left out on the right hand side when the mask allows it;

• The specifications must be separated by white space (spaces, tabs or newlines).

E.g., the following is a valid example of an external specification file:

34

5 TIPS, TRICKS AND RANDOM REMARKS

127.0.0.1
192.168.1/24
10/8

When external files are in effect, then the signal SIGHUP (1) causes Crossroads to reload
the external file. E.g., while Crossroads is running, you may edit /tmp/allow.txt, and then
issue killall -1 crossroads. The new contents of /tmp/allow.txt will be reloaded.

5.8.3 Mixing Directives

Crossroads allows to mix all directives in one service description. However, some mixes are
less meaningful than others. It’s up to you to take this into account.

The following rules apply:

• Blacklisting and whitelisting can be used together. When combined, the blacklist will
always be interpreted first. E.g., consider the following directives:

allowfrom 192.168.1/24
denyfrom 192.168.1.100

Given the fact that the deny list is checked first, client 192.168.1.100 won’t be able to ac-
cess Crossroads. Then the allow list will be checked, stating that all clients whose IP
address starts with 192.168.1 may connect. The effect will be that e.g., client 192.168.1.1
may connect, 192.168.1.2 may connect too, 192.168.1.100 will be blocked, and 10.1.1.1 will
be blocked as well.
Now consider the following directives:

allowfrom 192.168.1.100 127.0.0.1
denyfrom 192.168.1/24

This will first of all deny access to all IP addresses that start with 192.168.1. So the rule
that allows 192.168.1.100 won’t ever be effective. The net result will be that access will be
granted to 127.0.0.1.

• Blacklisting or whitelisting can be left out. A list is considered empty when no appro-
priate directives occur in /etc/crossroads.conf, or when the directive points to an
empty or non-existent external file.

• Using *from and *file statements is allowed, but doesn’t make sense. E.g., the follow-
ing configuration sample is such a case:

allowfrom 127.0.0.1 192.168.1/24
allowfile /tmp/allow.txt

There is a technical reason for this. Once Crossroads processes the allowfile directive,
then the whole whitelist is cleared (thereby removing the entries 127.0.0.1 and 192.168.1/24),
and new entries are reloaded from the file. The net result is that the allowfrom specifi-
cation is overruled.

Crossroads only performs syntactic checking of the configuration. Some of the above sam-
ples are syntactically correct, but make no semantic sense: Crossroads doesn’t warn for such
situations.

5.9 Configuration examples
5.9.1 A load balancer for three webserver back ends

The following configuration example binds crossroads to port 80 of the current server, and dis-
tributes the load over three back ends. This configuration shows most of the possible settings.

35

5 TIPS, TRICKS AND RANDOM REMARKS

service www {
/* We don’t need session stickyness. */
type any;

/* Port on which we’ll listen in this service: required. */
port 8000;

/* What IP address should this service listen? Default is ’any’.

* Alternatively you can state an explicit IP address, such as

* 127.0.0.1; that would bind the service only to ’localhost’. */
bindto any;

/* Verbose reporting or not. Default is off. */
verbosity on;

/* Dispatching mode, or: How to select a back end for an incoming

* request. Possible values:

* roundrobin: just the next back end in line

* random: like roundrobin, but at random to make things more

* confusing. Probably only good for testing.

* bysize: The backend that transferred the least nr of bytes

* is the next in line. As a modifier you can say e.g.

* bysize over 10, meaning that the 10 last connections will

* be used to compute the transfer size, instead of all

* transfers.

* byduration: The backend that was active for the shortest time

* is the next in line. As a modifier you can say e.g.

* byduration of 10 to compute over the last 10 connections.

* byconnections: The back end with the least active connections

* is the next ine line.

* byorder: The first available back end is always taken.

*/
dispatchmode byduration over 5;

/* Interval at which we’ll check whether a temporarily unavailable

* backend has woken up.

*/
revivinginterval 5;

/* TCP backlog of connections. Default is 0 (no backlog, one

* connection may be active).

*/
backlog 5;

/* For status reporting: a shared memory key. Default is the same

* as the port number, OR-ed by a magic number.

*/
shmkey 8000;

/* This controls when crossroads should consider a connection as

* finished even when the TCP sockets weren’t closed. This is to

* avoid hanging connections that don’t do anything. NOTE THAT when

* crossroads cuts off a connection due to timeout exceed, this is

* not marked as a failure, but as a success. Default is 0: no timeout.

36

5 TIPS, TRICKS AND RANDOM REMARKS

*/
connectiontimeout 300;

/* The max number of allowed client connections. When present, connections

* won’t be accepted if the max is about to be exceeded. When

* absent, all connections will be accepted, which might be misused

* for a DOS attack.

*/
maxconnections 300;

/* Now let’s define a couple of back ends. Number 1: */
backend www_backend_1 {

/* The server and its port, the minimum configuration. */
server httpserver1;
port 9010;
/* The ’decay’ of usage data of this back end. Only relevant

* when the whole service has ’dispatchmode bysize’ or

* ’byduration’. The number is a percentage by which the usage

* parameter is decreased upon each connection of an other back

* end.

*/
decay 10;

/* To see what’s happening in /var/log/messages: */
verbosity on;

}

/* The second one: */
backend www_backend_2 {

/* Server and port */
server httpserver2;
port 9011;

/* Verbosity of reporting when this back end is active */
verbosity on;

/* Decay */
decay 10;

/* This back end is twice as weak as the first one */
weight 2;

/* Event triggers for system commands upon succesful activation

* and upon failure.

*/
onsuccess echo ’success on backend 2’ | mail root;
onfailure echo ’failure on backend 2’ | mail root;

}

/* And yet another one.. this time we will dump the traffic

* to a trace file. Furthermore we don’t want more than 10 concurrent

* connections here. Note that there’s also a total maxconnections for the

* whole service.

*/

37

5 TIPS, TRICKS AND RANDOM REMARKS

backend www_backend_3 {
server httpserver3;
verbosity on;
port 9000;
verbosity on;
decay 10;
trafficlog /tmp/backend.3.log;
maxconnections 10;

}
}

5.9.2 An HTTP forwarder when travelling

As another example, here’s my crossroads.conf that I use on my Unix laptop. The problem
that I face is that I need many HTTP proxy configurations (at home, at customers’ sites and so
on) but I’m too lazy to reconfigure browsers all the time.

Here’s how it used to be before crossroads:

• At home, I would surf through a squid proxy on my local machine. The browser proxy
setting is then http://localhost:3128.

• Sometimes I start up an SSH tunnel to our offices. The tunnel has a local port 3129,
and connects to a squid proxy on our e-tunity server. Hence, the browser proxy is then
http://localhost:3129.

• At a customer’s location I need the proxy http://10.120.34.113:8080, because they
have configured it so.

• And in yet other instances, I use a HTTP diagnostic tool Charles6 that sits between
browser and website and shows me what’s happening. I run charles on my own machine
and it listens to port 8888, behaving like a proxy. The browser configuration for the proxy
is then http://localhost:8888.

Here’s how it works with a crossroads configuration:

• I have configured my browsers to use http://localhost:8080 as the proxy. For all
situations.

• I use the following crossroads configuration, and let crossroads figure out which proxy
backend works, and which doesn’t. Note two particularities:

– The statement dispatchmode byorder. This makes sure that once crossroads de-
termines which backend works, it will stick to it. This usage of crossroads doesn’t
need to balance over more than one back end.

– The statement bindto 127.0.0.1 makes sure that requests from other interfaces
than loopback won’t get serviced.

service HttpProxy {
port 8080;
bindto 127.0.0.1;
verbosity on;
dispatchmode byorder;
revivinginterval 15;

backend Charles {
server localhost:8888;
verbosity on;

6http://www.xk72.com/charles

38

5 TIPS, TRICKS AND RANDOM REMARKS

}

backend CustomerProxy {
server 10.120.34.113:8080;
verbosity on;

}

backend SshTunnel {
server localhost:3129;

}

backend LocalSquid {
server localhost:3128;

}
}

As a final note, the commandline argument tell can be used to influence crossroad’s own
detection mechanism of back end availability detection. E.g., if in the above example the back
ends SshTunnel and LocalSquid are both active, then crossroads tell httpproxy
sshtunnel down will ’take down’ the back end SshTunnel – and will automatically cause
crossroads to switch to LocalSquid.

5.9.3 SSH login with enforced idle logout

The following example shows how crossroads ’throttles’ SSH logins. Connections are accepted
on port 22 (the normal SSH port) and forwarded to the actual SSH daemon which is running
on port 2222.

Note the usage of the connectiontimeout directive. This makes sure that users are
logged out after 10 minutes of inactivity. Note also the maxconnections setting, this makes
sure that no more than 10 concurrent logins occur.

service Ssh {
port 22;
backlog 5;
maxconnections 10;
connectiontimeout 600;
backend TrueSshDaemon {

server localhost:2222;
}

}

5.10 Linux and ip_conntrack_max
The kernel value of ip_conntrack_max is important for routers and balancers under Linux.
Basically it’s the maximum number of tracked connections. Felix A.W.O. describes the follow-
ing situation:

• Crossroads seems to mark back ends as unavailable, while in fact nothing is afoot.

• This happens under heavy load.

• In /var/log/messages one may see the message: kernel: ip_conntrack: table
full, dropping packet.

The reason for Crossroad’s behavior is that the kernel refuses to build up a requested net-
work connection. For Crossroads, this looks just as a non-responding back end. Crossroads
therefore marks the back end as unavailable.

The solution is as follows:

39

6 BENCHMARKING

• Try cat /proc/sys/net/ipv4/ip_conntrack_max to see the current value.

• Add something to the shown value (e.g., multiply by two), and inform the kernel of the
new value, using echo (new-value) > /proc/sys/net/ipv4/ip_conntrack_max

• Make sure that the same step occurs somewhere in your boot sequence as well, or that the
new valueit is stated in a configuration file such as /etc/sysctl.conf.

The value for new-value is something that you’ll have to figure out yourself. Note however
that each count will cause the kernel to reserve 350 bytes. So if you set ip_conntrack_max to
100.000, then you’re already taking 33.3Mb off the total available memory.

5.11 Marking back ends as bad after more than one try
Crossroads allows you to specify on a per-back end basis how many retries are needed before
a back end is considered unavailable. The default is just one, meaning that after one failed
connection, Crossroads will mark a back end as unavailable (the back end may be ’revived’, if
you use revivinginterval).

Increasing the number is specified using the keyword retries. The following configura-
tion defines two back ends; the one on the IP address 5.6.7.8 is somehow ’flaky’, and Crossroads
should try connecting 3 times before crossing it off:

service www {
port 80;
backend plugh {

server 1.2.3.4:80;
}
backend xyzzy {

server 5.6.7.8:80;
retries 3;

}
}

There may be several reasons for increasing the retries number:

• The network connections to the server may spuriously hamper, but such rare errors don’t
mean that the back end server is down.

• The back end server is a ’slow starter’ and can’t handle spikes very well. E.g., it may
be a webserver which starts with only one daemon; extra capacity is added as network
connections arrive, but adding capacity take a little time.

Whatever the reason, the keyword retries might be of help here. This keyword should
however be used carefully: Crossroads will retry connecting with a small one-second delay in
between. A high retries number means also lots of one-second delays, in which time a client
is kept waiting.

6 Benchmarking
This section shows how crossroads affects the transmitting of HTML data when used as an
intermediate ’station’ through which all data travels.

6.1 Benchmark 1: Accessing a proxy via crossroads or directly
The benchmark was run on a system where the following was varied:

1. A website was recursively spidered through a local squid proxy. The spidering was re-
peated 10 times, the total was recorded.

40

6 BENCHMARKING

2. Crossroads was placed in front of the squid proxy, and the website was again recursively
spidered. Again, the spidering was repeated 10 times and the total was recorded.

The crossroads configuration of the second alternative is shown below:

service HttpProxy {
port 8080;
verbosity on;
backend LocalSquid {

server 127.0.0.1;
port 3128;
verbosity on;

}
}

6.1.1 Results

The results of this test are that crossroads causes a negligible delay, if it is statistically relevant
at all. Without crossroads, the timing results are:

real 0m8.146s
user 0m0.130s
sys 0m0.253s

When using crossroads as a middle station, the results are:

real 0m9.481s
user 0m0.141s
sys 0m0.230s

6.1.2 Discussion

The above shown results are quite favorable to crossroads. However, one should know that
situations will exist where crossroads leans towards the ’worst case’ scenario, causing up to
50% delay.

E.g., imagine a test where a wget command retrieves a HTML document from an Apache
server on localhost. Now we have (almost) no overhead due to network throttling, host-
name lookups and so on. When this test would be run either with or without crossroads in
between, then theoretically, crossroads would cause a much larger delay, because it has to read
from the server, and then write the same information to wget. Each read/write occurs twice
when crossroads sits in between.

This worst case scenario will however (fortunately) occur only very seldom in the real
world:

• Normally network issues, such as the above mentioned host name lookups or through-
put restrictions, will add significantly to the duration of a request. The ’twice as many’
read/writes caused by crossroads are then relatively irrelevant.

• Normally a significant amount of time will be spent in a back end, due to processing
(e.g., when calling a servlet on a back end). Again, this processing time will weigh much
heavier than the multiple read/writes.

6.2 Benchmark 2: Crossroads versus Linux Virtual Server (LVS)
LVS is a kernel-based balancer that acts like a masquerading firewall: TCP packets that arrive at
the balancer are sent to one of the configured back ends. LVS has the advantage over crossroads
that there is no stop-and-go in the transmission; in contrast, crossroads needs to send data via
an internal buffer. Crossroads has the advantage that it offers instantaneous failover because it

41

6 BENCHMARKING

tries to contact the back end for upon each new TCP connection; in contrast, LVS isn’t aware of
downtime of back ends (unless one implements an external heartbeat). Also, crossroads offers
more complex balancing than LVS.

6.2.1 Environment

On the balancer, LVS was run on port 80, its forwarding set up for two equally weighted back
ends, using ipvsadm:

ipvsadm -a -t 192.168.1.250:http -r 10.1.1.100:http -m -w 1
ipvsadm -a -t 192.168.1.250:http -r 10.1.1.101:http -m -w 1

Crossroads was run on port 81. The configuration file is shown below:

service http {
port 81;
dispatchmode roundrobin;
revivinginterval 5;
backend one {

server 10.1.1.100;
port 80;

}
backend two {

server 10.1.1.101;
port 80;

}
}

6.2.2 Tests and results

In the first test, ports 80 and 81 on the balancer were ’bombed’ with 50 concurrent clients, each
requesting a small page 50 times. The following timings where measured:

• How long it takes to establish a connection;

• How long it takes to retrieve the page.

The results of this test were:

• On average, each client took 0.12 seconds to connect to LVS, and each page was retrieved
in 0.14 seconds;

• On average, each client took 0.11 seconds to connect to crossroads, and each page was
retrieved in 0.13 seconds.

In this setup there seems to be no difference between the performance of LVS and cross-
roads!

In a second test, the size of the retrieved page was varied from 2.000 to 2.000.000 bytes.
This test was taken to see whether crossroads would show performance degradation when
transferring larger amounts of data.

For each page size, 30 concurrent clients were started, that retrieved the page 50 times.
Again, the connect times and processing times where recorded.

The results of the total time (connect time + retrieval time) are shown in the below table:
Bytes LVS timing Crossroads timing

2000 0.130741688 0.12739582
20000 0.490916224 0.50376901

200000 3.799440328 4.33125273
2000000 45.25090855 45.9600728

Again, the results show that crossroads performs just as effectively as LVS, even with large
data chunks!

42

7 COMPILING AND INSTALLING

7 Compiling and Installing

7.1 Prerequisites
The creation of crossroads requires:

• Standard Unix tools, such as sed, awk, Perl (5.00 or better);

• A POSIX-compliant C compiler;

• Support for SYSV IPC, networking and so on.

Basically a Linux or Apple MacOSX box will do nicely. To compile and install crossroads,
follow these steps.

7.2 Compiling and installing
• Obtain the source distribution. It can be found on http://crossroads.e-tunity.com.

The distribution comes as an archive crossroads-type.tar.gz, where type is stable
or devel.

• Unpack the archive in a sources directory using tar xzf crossroads-X.YY.tar.gz.
The contents spill into a subdirectory crossroads-X.YY/.

• Change-dir into the directory.

• Next, edit etc/Makefile.def and verify that all compilation settings are to your lik-
ings. The settings are explained in the file. Note that the default distribution of Makefile.def
is suited for Linux or Apple MacOSX systems. On other Unices, or on non-Unix systems,
you must particularly pay attention to SET_PROC_TITLE_BY.... When in doubt, com-
ment out all SET_PROC_TITLE... settings. Crossroads will work nevertheless, but it
won’t show nice titles in ps listings. Also there’s a macro EXTRA_LIBS to add linkage
flags (an example for a Solaris build is included).

• Now crossroads is ready for compilation. Do a make local followed by make install.
The latter step may have to be done by the user root if the BINDIR setting of etc/Makefile.def
points to a root-owned directory.

• The documentation doesn’t install in this process. If you want to install the documenta-
tion, then proceed as follows:

– Optionally, cp doc/crossroads.html htmldirectory/ ; where htmldirectory is the
destination directory for your HTML manuals;

– Optionally, cp doc/crossroads.pdf pdfdirectory/ ; where pdfdirectory is the desti-
nation directory for your PDF manuals;

– Optionally, cp doc/crossroads.manmanualdirectory/crossroads.1, where man-
ualdirectory is e.g. /usr/man/man1, /usr/share/man1, /usr/local/man/man1,
/usr/local/share/man1. Any possibility is valid, as long as manualdirectory is
one of the directories where manual pages are stored;

– If your manual page system supports compressed manual pages, then you can save
some space with gzip manualdirectory/crossroads.1.

7.3 Configuring crossroads
Now that the binary is available on your system, you need to create a suitable /etc/crossroads.conf.
Use this manual or the output of crossroads samplconf to get started.

Once you have the configuration ready, start crossroads with crossroads start. Test
the availability of your services and back ends. Monitor how crossroads is doing with:

• In one terminal, run the script:

43

7 COMPILING AND INSTALLING

while [1] ; do
tput clear
crossroads status
sleep 3

done

Note that depending on your system you might need sleep 3s, i.e., with an s ap-
pended.

• In another terminal, run:

while [1] ; do
tput clear
ps ax | grep crossroads | grep -v grep
sleep 3

done

Note that depending on your system you might need ps -ef instead of ps ax.

• In yet another terminal, run tail -f /var/log/messages (supply the appropriate
system log file if /var/log/messages doesn’t work for you).

Now thoroughly test the availability of your back ends through crossroads. The status dis-
play will show an updated view of which back ends are selected and how busy they are. The
process list will show which crossroads daemons are running. Finally, the tailing of /var/log/messages
shows what’s going on – especially if you have verbosity true statements in the configu-
ration.

7.4 A boot script
Finally, you may want to create a boot-time startup script. The exact procedure depends on the
used Unix flavor.

7.4.1 SysV Style Startup

On SysV style systems, there’s a startup script directory /etc/init.d where bootscripts for
all utilities are located. You may have the chkconfig utility to automate the task of inserting
scripts into the boot sequence, but otherwise the steps will resemble the following.

• Create a script crossroads in /etc/init.d similar to the following:

#!/bin/sh
/usr/local/bin/crossroads -v $@

The stated directory /usr/local/bin must correspond with the installation path. The
flag -v causes the startup to be more ’verbose’. However, once daemonized, the verbosity
is controlled by the appropriate statements in the configuration.

• Determine your ’runlevel’: usually 3 when your system is running in text-mode only, or
5 when you are using a graphical interface. If your runlevel is 3, then:

root> cd /etc/rc.d/rc3.d
root> ln -s /etc/init.d/crossroads S99crossroads
root> ln -s /etc/init.d/crossroads K99crossroads

This creates startup (S*) and stop (K*) links that will be run when the system enters or
leaves a given runlevel.
If your runlevel is 5, then the right cd command is to /etc/rc.d/rc5.d. Alternatively,
you can create the symlinks in both runlevel directories.

44

7 COMPILING AND INSTALLING

7.4.2 BSD Style Startup

On BSD style systems, daemons are booted directly from /etc/rc and related scripts. Incase
you have a file /etc/rc.local, edit it, and add the statement:

/usr/local/bin/crossroads start

If your BSD system lacks /etc/rc.local, then you may need to start Crossroads from
/etc/rc. Your mileage may vary.

45

